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 

Abstract— The finite difference method is employed to 

introduce a consistent nonlinear system of algebraic equations 

corresponding to the nonlinear boundary value problem (BVP). 

Taylor expansion is used as a linearization technique to 

introduce a linear algebraic system of equations approximating 

the nonlinear system. Solutions of the linearized system are 

taken as the initiation for the Newton’s Raphson iteration when 

solving the nonlinear system. Application  to Bratu’s problem 

and similar problems with damping effects have illustrated the 

efficiency of the treatment. Two numerical examples with their 

graphical representation are given. The calculated results have 

illustrated the correctness of the treatment. 

Index Terms— Bratu’s problem, BVP, Exponential 

nonlinearity, Finite difference method, Newton’s Raphson.  

 

I. INTRODUCTION 

This paper considers the use of the finite difference method 

for solving some types of nonlinear boundary value problems 

(exponential nonlinearity). It is well known that 

discretization of nonlinear boundary value problems 

produces nonlinear algebraic systems [1] – [8]. Solutions of 

nonlinear systems of algebraic equations is a problem in 

itself, [8]. There is no analytical technique which can be used 

to solve nonlinear algebraic systems and the numerical 

treatment is the suitable choice. Among the numerical 

techniques for solving nonlinear algebraic systems is the 

Newton’s Raphson technique. The difficulty in using the 

Newton’s method is the need to know good initiation in the 

sense of being very close to the exact solution (fixed point). 

The importance of boundary value problems appears from 

the huge list of publications and from the applications in 

which BVP appears. Also, BVP appears in the treatment of 

many problems in partial differential equations (eigen value 

problems when the separation of variables technique is used). 

The general functional formulation of boundary value 

problems can be written in the form, [2], [7] 

0))(''),('),(,( tutututF , bta                         (1) 

Subject to the boundary conditions of the form 

14321 )(')()(')( rbubuauau    

24321 )(')()(')( rbubuauau                            (2) 

where i , i   and ir are given constants  

when the BVP is linear in the highest order derivative, it can 

be written in the form  

0))('),(,()(''  tututftu                                     (3) 

We restrict this work to the discretization of nonlinear BVP 

with exponent nonlinearity of the form 
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 Subject to Dirichlet boundary conditions of the form 

1)0( ru  ,  2)1( ru                                           (5) 

Such problems appear in physical, chemical and engineering 

application problems.  Radiation, Bratu’s problem are good 

examples for such classes of BVP, [1]. The Bratu’s problem 

is used as a benchmark problem to test the accuracy of many 

numerical techniques. 

An expansion of the exponential term in the form  
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Is used. Truncating this series up to the linear terms 

introduces a linearized problem corresponding to the original 

problem. Discretizing the linearized problem produces a 

linear system. The solution of the linearized system is taken 

as the initial step to solve the original nonlinear system. Two 

numerical examples are given to illustrate the treatment.   

II. MATERIAL AND METHODS 

The continuous domain ]1,0[  is replaced by a grid as shown 

in figure (1)  

 
Figure 1 the grid imposed on the interval [0, 1] 

The set of grid points denoted by 
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the central difference approximation for the second order 

derivative  
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It is generally accepted that every differential equation can be 

approximated by a corresponding finite difference scheme by 

replacing the derivative terms by their corresponding finite 

difference approximation at each grid point. Accordingly, 

equation (2) can be written in the discrete form  
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                    1,,1  Ni                                (9) 

Accordingly, a system of algebraic equations is obtained the 

solution of the algebraic system gives approximation to the 

solution of the given boundary value problem. This system is 
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linear when the function ))('),(,( tututf is linear otherwise it is 

nonlinear. Two practical problems with physical origins are 

considered.  

The first is the Bratu type Boundary Value Problem.  

    One of the standard benchmark problems used to test the 

accuracy of many numerical methods is the Bratu’s type 

equation. Bratu type equation in its simple form is  

)()('' )( tfetu tu   , 10  t      

1)0( ru  ,  2)1( ru                                         (10) 

Using the same grid described in figure (1) anyone can write 

the algebraic system in the form 
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This is a system of (N-1) nonlinear algebraic equations. The 

values required to initiate Newton’s method can be calculated 

from the solution of linear system obtained from the 

truncated Taylor series for the exponential term, which has 

the form 

11
2

1
2

21 )()1(2 rtfhuhuu   

)()1(2 22
11 iiiii tfhuhuuu            (12) 

2,,3,2  Ni   

21
2

1
2

21 )()1(2 rtfhuhuu NNNN   This is a linear 

system and its solution is taken as the initiation for the 

solution of the nonlinear system and this can be seen from 

example (1)  

The second case considers the existence of damping term. It 

is generally accepted that the first order derivative term has 

damping effects. So we consider a second order BVP with 

damping term in the form 
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1)0( ru  ,  2)1( ru                                          (13) 

Using the same grid described in figure (1) the corresponding 

algebraic system is 
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This is a nonlinear algebraic system of (N-1) nonlinear 

algebraic equations. The values required to initiate Newton’s 

method can be calculated from the solution of the linear 

system obtained from using Taylor series for the exponent 

term 
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This is a linear 

system and its solution is taken as the initiation for the 

solution of the nonlinear system (14) and this can be seen 

from example (2)  

Theorem (1) 

The finite difference representation of the BVP described in 

(11) or (14) is second order accurate. 

Proof 

The prove is straightforward by expanding the terms in 

standard Taylor series  

Theorem (2) 

The finite difference representation (11)  is  consistent the 

boundary value problem (10) and The finite difference 

representation (14)  is  consistent the boundary value problem 

(13) . 

III. NUMERICAL EXAMPLES  

Two numerical examples are given to illustrate the 

theoretical behaviors described 

Example 1 

The nonlinear second order BVP  
2

2'' )( ttu eeu    

0)0( u ,  1)1( u                                               (16) 

Taking 1.0h the nonlinear algebraic system can be written 

in the form 
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   1,0 100  uu                                        

  and this gives a non-linear system 

0100995.001.02 1
21 

u
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   0103921.001.02 2
321 
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   0108607.001.02 3
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u
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                                                                         (18) 

   22757.201.02 9
9 

u
eu    

The solution of the system (18) is shown in table (1) and 

figure (2).  

 

 Note that the coincidence of the approximate and the exact 

solutions due to the nature of the exact solution, 2)( ttu    

 

Table 1: The results of exact and approximation solutions 

 

it  Exact App 

0.0 0 0 

0.1 0.01 0.01 

0.2 0.04 0.04 

0.3 0.09 0.09 

0.4 0.16 0.16 

0.5 0.25 0.25 

0.6 0.36 0.36 

0.7 0.49 0.49 

0.8 0.64 0.64 

0.9 0.81 0.81 

1.0 1 1 
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Fig 2: The behavior of the solution of nonlinear system 

when, h=0.1 

Example 2 

The nonlinear second order BVP with damping term  
2
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With the exact solution, 2)( ttu   

Taking 125.0h and using finite difference method, the 

system described in (14) becomes 
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  and this gives a non-linear system 

01196.0015625.09375.02 1
21 

u
euu  

00875917.0015625.09375.020625.1 2
321 

u
euuu   

00595601.0015625.09375.020625.1 3
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u
euuu                                                                                    

(21) 

94086.0015625.020625.1 7
76 

u
euu  

The solution of the system (21) is shown in table (2) and 

figure (3).  

Table 2: the results of exact and approximation solutions 

 

it  Exact App 

0.0 0 0 

0.1 0.01562

5 

0.0156

25 

0.2 0.0625 0.0625 

0.3 0.14062

5 

0.1406

25 

0.4 0.25 0.25 

0.5 0.39062

5 

0.3906

25 

0.6 0.5625 0.5625 

0.7 0.76562

5 

0.7656

25 

0.8 1 1 

 

 

 
 

Fig 3: The behavior of the solution of nonlinear system 

when, h=0.125 

IV. CONCLUSIONS  

We considered nonlinear BVP with exponential 

nonlinearity with and without damping term. By using Taylor 

expansion with the exponential term and using the linear 

terms a linear BVP approximating the original nonlinear 

problem is obtained. The calculated results are in a good 

agreement with the exact solution due to the good initial 

values obtained from the solution of the linear problem. The 

technique can be used to other nonlinearities not only those of 

exponential forms and this will be our tasks in subsequent 

works.  
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